tRNA splicing.

نویسندگان

  • J Abelson
  • C R Trotta
  • H Li
چکیده

Introns interrupt the continuity of many eukaryal genes, and therefore their removal by splicing is a crucial step in gene expression. Interestingly, even within Eukarya there are at least four splicing mechanisms. mRNA splicing in the nucleus takes place in two phosphotransfer reactions on a complex and dynamic machine, the spliceosome. This reaction is related in mechanism to the two self-splicing mechanisms for Group 1 and Group 2 introns. In fact the Group 2 introns are spliced by an identical mechanism to mRNA splicing, although there is no general requirement for either proteins or co-factors. Thus it seems likely that the Group 2 and nuclear mRNA splicing reactions have diverged from a common ancestor. tRNA genes are also interrupted by introns, but here the splicing mechanism is quite different because it is catalyzed by three enzymes, all proteins and with an intrinsic requirement for ATP hydrolysis. tRNA splicing occurs in all three major lines of descent, the Bacteria, the Archaea, and the Eukarya. In bacteria the introns are self-splicing (1–3). Until recently it was thought that the mechanisms of tRNA splicing in Eukarya and Archaea were unrelated as well. In the past year, however, it has been found that the first enzyme in the tRNA splicing pathway, the tRNA endonuclease, has been conserved in evolution since the divergence of the Eukarya and the Archaea. Surprising insights have been obtained by comparison of the structures and mechanisms of tRNA endonuclease from these two divergent lines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Confirmation of a Whole Set of tRNA Molecules in Two Archaeal Species

Based on the genomic sequences for most archaeal species, only one tRNA gene (isodecoder) is predicted for each triplet codon. This observation promotes analysis of a whole set of tRNA molecules and actual splicing patterns of interrupted tRNA in one organism. The entire genomic sequences of two Creanarchaeota, Aeropyrum pernix and Sulfolobus tokodaii, were determined approximately 15 years ago...

متن کامل

The Yeast tRNA Splicing Endonuclease: A Tetrameric Enzyme with Two Active Site Subunits Homologous to the Archaeal tRNA Endonucleases

The splicing of tRNA precursors is essential for the production of mature tRNA in organisms from all major phyla. In yeast, the tRNA splicing endonuclease is responsible for identification and cleavage of the splice sites in pre-tRNA. We have cloned the genes encoding all four protein subunits of endonuclease. Each gene is essential. Two subunits, Sen2p and Sen34p, contain a homologous domain o...

متن کامل

A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomycescerevisiae.

Los1p, the Saccharomyces cerevisiae exportin-t homologue, binds tRNA and functions in pre-tRNA splicing and export of mature tRNA from the nucleus to the cytosol. Because LOS1 is unessential in yeast, other pathways for tRNA nuclear export must exist. We report that Cca1p, which adds nucleotides C, C, and A to the 3' end of tRNAs, is a multicopy suppressor of the defect in tRNA nuclear export c...

متن کامل

Long-distance splicing.

W ith the draft sequence of the human genome came the surprise that there were fewer genes than imagined. From where does complexity spring if not from the number of genes in an organism? RNA splicing provides at least part of the answer. Pre-mRNA splicing by alternative pathways is well known to expand an organism’s protein diversity by generating distinct protein isoforms. Beyond cis-splicing...

متن کامل

Identification of a Human Endonuclease Complex Reveals a Link between tRNA Splicing and Pre-mRNA 3′ End Formation

tRNA splicing is a fundamental process required for cell growth and division. The first step in tRNA splicing is the removal of introns catalyzed in yeast by the tRNA splicing endonuclease. The enzyme responsible for intron removal in mammalian cells is unknown. We present the identification and characterization of the human tRNA splicing endonuclease. This enzyme consists of HsSen2, HsSen34, H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 21  شماره 

صفحات  -

تاریخ انتشار 1998